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1 Introduction

The para oli equation (PE) method [1-4] is very effe tive for solving range-
dependent o ean a ousti s pro lems. This do ument is a user’s guide for the
Range-dependent A ousti Model (RAM), a FORTRAN ode ased on the
latest te hniques in PE modeling. Version 1.0 of RAM is designed for single-
pro essor al ulations. Version 1.0p an e several times faster than Version
1.0 on a parallel-pro essing omputer. Se tion 2 des ri es the PE te hniques
used in RAM. Se tion 3 des ri es the omputer ode and the format of the
input file.

RAM is ased on the split-step Padé solution [5,6], whi h allows large
range steps and is the most effi ient PE algorithm that has een developed [7].
Range dependen e is handled a wurately y applying an energy- onservation

orre tion [8,9] as the a ousti parameters vary with range. An initial on-

dition (or starting field) is onstru ted using the self-starter [10,11], whi h
is an a urate and effi ient approa h ased on the PE method (hen e the
name).

The numeri al solution of the para oli wave equation involves repeat-
edly solving tridiagonal systems of equations. This key omponent of RAM
has een optimized y minimizing the num er of operations and y using
a spe ial elimination s heme that is effi ient for pro lems involving varia le
o ean depth [12,13]. The split-step Padé algorithm is ased on rational fun -
tion approximations. The tridiagonal systems of equations that orrespond
to different terms of the rational approximation may e solved in parallel to
a hieve signifi ant gains in effi ien y.



2 Parabolic equation techniques

The PE method is ased on assuming that outgoing energy dominates a k-
s attered energy and fa toring the operator in the frequen y-domain wave
equation to o tain an outgoing wave equation. A fun tion of an operator
is then approximated using a rational fun tion to o tain an equation that
an e solved numeri ally. By redu ing an ellipti  oundary-value pro lem
to an initial-value pro lem in range, run times an e redu ed y a fa tor
of several orders of magnitude. This gain in effi ien y does not ome at the
expense of a ura y e ause range dependen e is gradual (so that outgoing
energy dominates) in many o ean environments.

We work in  ylindri al oordinates, where the range r is the horizontal
distan e from a point sour e, z is the depth elow the o ean surfa e, and 4 is
the azimuth. Cylindri al spreading is handled y removing the fa tor /2
from the omplex pressure p. Pro lems are redu ed to two dimensions using
the un oupled-azimuth approximation [14-17], whi h is valid when horizon-
tal variations in the medium are suffi iently gradual. Range dependen e is
handled y approximating the medium as a sequen e of range-independent
regions. An ar itrary level of a ura y may eo tained y using a suffi ient
num er of regions.

Away from the sour e, p satisfies the following far-field equation in ea h
range-independent region:
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where p is the density, & = (1 +inf)w/c is the wave num er, w is the
ir ular frequen vy, ¢ is the speed of sound, /3 is the attenuation in dB/A, and
n = (407 log,oe)”". Fa toring the operator in Eq. (1), we o tain
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where kg = w/co and ¢ is a representative phase speed. Assuming that

outgoing energy dominates a k-s attered energy, we o tain the outgoing



wave equation,

a—p iko (14 X) /2. (4)
The formal solution of Eq. (4) is
p(r+ Ar,z) = exp (zkoAr (1+ X)l/z) (r,z) , (5)

where Ar is the range step. Applying an n-term rational fun tion to approx-
imate the exponential fun tion, we o tain

"1+ e, X
+ A = (tkoAr) S
p(r r,z) = exp (ko rHl—I—ﬂL

p(r,z) . (6)

Version 1.0 of RAM is ased on Eq. (6) and is designed for single-pro essor
appli ations. Expanding the rational fun tion in Eq. (6) y partial fra tions,
we o tain

p(r+ Ar,z) = exp (tkoAr) (1 + Z YinX ) p(r,z) . (7)
Version 1.0p of RAM is  ased on Eq. (7) and is useful for parallel pro essing,
with the terms on the right-hand side assigned to different pro essors. Sin e
the sum form of the rational fun tion is more sensitive to round-off errors
than the produ t form, it is ne essary to ompile Version 1.0p in dou le
pre ision when koAr is large.

The omplex oeffi ients «;, and 3;, are defined y pla ing a ura y
and sta ility onstraints on the rational fun tion. The a ura y onstraints
guarantee that the propagating spe trum X = 0 is handled a urately. The
purpose of the sta ility onstraints, whi h are essential for the self-starter and
the energy- onservation orre tion, is to annihilate the evanes ent spe trum
Re(X) < —1. RAM omputes the oeffi ients in Eq. (6) y first solving a
linear pro lem for the oeffi ients of a ratio of two polynomials of degree n
and then using su routines from [18] to find the roots of the polynomials.
The onstraints used in RAM are that 2n — n, derivatives of the rational
fun tion are orre t at X = 0 and that the rational fun tion vanishes at n;
points in the evanes ent region. We have found that ny =1 or 2 is effe tive
for most pro lems. The sta ility onstraints introdu e a small amount of
artifi ial attenuation, whi h is insignifi ant for most pro lems ut an e



signifi ant for propagation in deep water to very long ranges. To handle
this type of pro lem a urately, RAM provides the option of turning off the
sta ility onstraints at a spe ified range.

The self-starter is an a urate and effi ient approa h for o taining an
initial ondition for Eq. (4). For the ase of a line sour e at z = zy in plane
geometry, the omplex pressure satisfies
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Integrating Eq. (8) over an ar itrarily small « interval a out the origin, we
o tain

lim — =146(z —z) . 9)
Su stituting the outgoing wave equation into Eq. (9), we o tain
ko (1+ X)) P p=6(2—z) . (10)

The initial ondition an not e evaluated numeri ally at + = 0 due to
the singularity at the sour e lo ation. We evaluate the field at ©+ = x¢ to
avoid the singularity, where xg is on the order of a wavelength. Su stituting
Eq. (5) into Eq. (10) with z¢ in pla e of Ar, we o tain

_exp (ikoxo (1+ X)l/z)
p(wo, 2) = (1t X)7 6(z—z0) - (11)

The self-starter requires a modifi ation for the ase of a point sour e in
ylindri al geometry. The normal-mode representation of the a ousti field
is used in [10] to show that the self-starter for a point sour e is of the form,

exp (ikoro (1+ X)l/z)
AP (14 X))

6(z2—z) . (12)

p(TO,Z) =

To avoid en ountering singular intermediate solutions, RAM solves Eq.
(12) with the following approa h [11]:

(14 X)2q(2) = kg %6 (2 = 20) . (13)
p(ro.z) = (1+X) " exp (ikoro (1 + X)"?) q(2) . (14)
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The intermediate fun tion ¢ has two ontinuous derivatives. A rational-linear
fun tion is used to approximate the operator in Eq. (14).

The solution is advan ed through ea h of the range-independent regions
using Eq. (6) or (7). For range-dependent pro lems, it is ne essary to spe ify
a ondition at the verti al interfa es etween regions. A urate solutions may

e o tained y onserving the energy flux,

Im/p_lp* 8}; dz . (15)

The normal-mode representation is used in [19] to show that energy flux may
e onserved y onserving the linear quantity,

A=p PP (0 + ). (16)
In the limit of nearly horizontal propagation,
A~ p/Oé ) (17)

where a = (p/k)l/Z. Conserving p/a provides a urate solutions for most
pro lemsin o ean a ousti s. To onserve energy, RAM is implemented using
the modified dependent varia le p = p/a and the modified depth operator,

X = ky? (ﬁglgaJrk?—kg) : (18)

Sin e different quantities are onserved a ross horizontal (p) and verti al
(p/a) interfa es, Gi s os illations an o ur for pro lems involving sloping
interfa es. The sta ility onstraints annihilate these artifa ts, whi h proje t
onto the evanes ent spe trum.

The depth operator X is dis retized using Galerkin’s method as des ri ed
n [9]. This approa h for repla ing the depth operator with a tridiagonal ma-
trix handles pie e-wise ontinuous depth variations in the a ousti parame-
ters. After dis retizing in depth, the numeri al solution involves repeatedly
solving tridiagonal systems of equations. As Figure 1 indi ates, Gaussian
elimination involves sweeping downward to eliminate entries elow the main
diagonal followed y a k su stitution sweeping upward. The entries near
the o ean ottom interfa e hange when athymetry varies, and it is ne es-
sary to repeat the downward elimination throughout the o ean ottom. The



other elimination s heme illustrated in Figure 1 is more effi ient for pro lems
involving varia le o ean depth. Elimination egins at oth the top (entries

elow the main diagonal are eliminated) and ottom (entries a ove the main
diagonal are eliminated) of the grid and ends at the o ean ottom interfa e.
Ba k su stitution then pro eeds in oth dire tions from the o ean ottom.
With this approa h, it is ne essary to modify only a few rows of the matri es
when o ean depth varies.

3 Computer implementation

In this se tion, we dis uss how to run RAM and how the ode is organized.
Sin e ram.f (Version 1.0) and ramp.f (Version 1.0p) are relatively short
and simple odes, they are easy to modify for spe ial appli ations su h as
interfa ing with a data ase, outputting data in a parti ular format, or using
as a su routine for another ode. The files in the RAM pa kage in lude
ram.f, ramp.f, ram.in, ram. jpg, and ram.ps. These files are availa le via
anonymous ftp from ram.nrl.navy.mil in the dire tory /ftp/pub/ram.

The main part of ram.f ontains a all to the su routine setup to ini-
tialize parameters, a loop that mar hes the solution in range, a all to outpt
to write out transmission loss, and a all to updat to update the tridiagonal
matri es when the environment varies with range. Su routine setup reads
in and defines parameters, initializes the profiles and tridiagonal matri es,
and onstru ts the starting field. Su routines profl and zread read in the
profiles and interpolate them onto the grid and define the fun tions that ap-
pear in Eq. (18) in the water olumn and in the ottom. Su routine matrc
sets up the tridiagonal matri es and the spe ial de omposition des ri ed in
Se tion 2. Su routine solve solves the tridiagonal system using the de om-
posed matri es. Su routine outpt writes out transmission loss at z = z, at
every range to tl.line and on a de imated range-depth grid to t1.grid.
Su routine updat modifies the matri es when o ean depth varies (this pro-

edure requires little effort) and re onstru ts the matri es when the profiles
are updated.

Su routine epade omputes the oeffi ients of the rational fun tion with
the help of several other su routines in luding su routines from [18] for find-
ing the roots of a polynomial. Su routine epade writes out to pade.check
the values of the rational fun tions and the fun tions they approximate over



a set of points that in ludes oth the propagating and evanes ent spe trum.
This file an e used to determine appropriate values for n and c¢g. The
su routines that ompute the oeffi ients of the rational approximation are
written in dou le pre ision. Everything else is written in single pre ision.
For some omputers and appli ations, it is ne essary to modify the pre ision
for the odes or parts of the odes. Dou le pre ision is required for ramp.f
when kygAr is large. Dou le pre ision is required for oth ram.f and ramp.f
when the num er of depth grid points is large.

The form of the input file ram.in is illustrated in Figure 2. Many of
the inputs that are defined in Figure 3 orrespond to parameters defined
in Se tion 2 and are self-explanatory. The first line of ram.in ontains the
title, whi h may e any string of hara ters. The de imation fa tors ndr
and ndz are the num er of range and depth grid spa ings etween output to
tl.grid. The maximum depth of output to t1.grid is zmplt. The depth
of the o ean is defined y the athymetry points rb and zb, with linear
interpolation etween the input points. The sta ility onstraints are turned
off at the range rs. This option an e used for long-range propagation in
deep water to prevent the introdu tion of artifi ial attenuation. When rs is
set to 0, the sta ility onstraints are used for all ranges.

The profile lo k(s) follow the athymetry lo k. The range of the profile

lo k rp must e spe ified for ea h profile lo k after the first one. Sin e
there is no limit to the num er of profile lo ks, RAM an handle omplex
environments. The sample input file appearing in Figure 2 has two profile

lo ks. The speed of sound in the water olumn ¢, and the ottom ¢, are
onstru ted from cw and cb. The density p, and attenuation 3, in the ottom
are onstru ted from rhob and attn. In the water olumn, the density is
assigned the value p, = 1 g/ and the attenuation is assumed to vanish. To
prevent artifi ial refle tions, the ottom of the omputational grid (the depth
zmax) is pla ed well elow the o ean ottom interfa e and the attenuation is
in reased over the lower few wavelengths of the grid. The profiles are linearly
interpolated in depth etween the input values and are assumed onstant (not
extrapolated) outside the range of input. With this onvention, the num er
of inputs is minimized (e.g., onstant profiles are defined in the sample input
file simply y spe ifying the value at z = 0).
For pro lems involving varia le o ean depth d(r), the a ousti parame-



ters are defined as follows:

¢y (2) for =z <d(r
¢(rz) = {cb ((Z)) for =z ><d((r)) (19)
w for z <d(r
plr.z) = { Zb (2) for<z >( c)l(r) (20)

[0 for z<d(r)

Blr2)= {ﬂb (z) for z>d(r) (21)
The profiles are not interpolated in range. Range dependen e in ¢, ¢, ps,
and fj is handled y updating cw, cb, rhob, and attn a ruptly at the range
rp. If gradual range dependen e is desired, it is ne essary to either use an
appropriate sequen e of profile lo ks or modify ram.f to interpolate profiles.
The pro lem defined in Figure 2 involves range-dependent sound speed
and athymetry. There is a surfa e du t in the upper part of the water
olumn for r < 25 km. The sound speed in the water olumn is homogeneous
for r > 25 km. There is an a sor ing layer in the lower 100 m of the o ean
ottom. A relatively large value is used for ¢y in order to o tain an a urate
rational approximation for phase speeds etween 1500 and 1700 m/s. The
RAM solution appearing in Figure 4 for this pro lem is a urate for a range
step of 500 m. To a hieve similar a ura y with finite-differen e algorithms
that predate the split-step Padé algorithm [20-22], it is ne essary to use
a range step of a out 5 m. For this pro lem, the split-step Padé solution
therefore provides an effi ien y gain of a out an order of magnitude with a
single pro essor and a out two orders of magnitude with parallel pro essing.

A olor image of the solution of this pro lem appears in the file ram. jpg.
RAM provides a urate solutions for o ean a ousti s pro lems provided
the inputs are sele ted properly. A ura y may e ontrolled y perform-
ing simple onvergen e tests to determine an appropriate parametrization of
the environment and appropriate values for the grid spa ings, the num er of
terms in the rational approximation, the value of the referen e sound speed,
the lo ation of the lower oundary, and the thi kness of the a sor ing layer.
The size of Ar is limited y the rate of range dependen e. When range de-
penden e is strong (i.e., the o ean ottom interfa e is relatively steep), it
is ne essary to use a relatively large num er of range-independent regions.
The size of the smallest region is an upper ound on Ar. When the rate



of range dependen e varies signifi antly, effi ien y an e improved y mod-
ifying ram.f to allow a varia le range step. The transmission loss data in
t1l.line is useful for onvergen e tests.

4 Acknowledgments

This work was supported y the Offi e of Naval Resear h. The author thanks
R. J. Ceder erg for helping develop effi ient te hniques for o taining rational-
linear approximations and A. B. Baggeroer for pointing out the need to turn
off the sta ility onstraints for some pro lems.

References

[1] M. A. Leontovi h and V. A. Fo k, “Solution of the pro lem of propagation
of ele tromagneti waves along the earth’s surfa e y the method of para oli

equation,” J. Exp. Theor. Phys. 16, 557-573 (1946).

[2] V. A. Fo k, Electromagnetic Diffraction and Propagation Problems (Perg-
amon, New York, 1965), pp. 213-234.

[3] F. D. Tappert, “The para oli approximation method,” in Wave Propa-
gation and Underwater Acoustics, edited y J. B. Keller and J. S. Papadakis,
Le ture Notes in Physi s, Vol. 70 (Springer, New York, 1977).

[4] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. S hmidt, Compu-
tational Ocean Acoustics (Ameri an Institute of Physi s, New York, 1994),
pp. 343-412.

[5] M. D. Collins, “A split-step Padé solution for para oli equation method,”
J. A oust. So . Am. 93, 1736-1742 (1993).

[6] M. D. Collins, “Generalization of the split-step Padé solution,” J. A oust.
So . Am. 96, 382-385 (1993).

[7] M. D. Collins, R. J. Ceder erg, D. B. King, and S. A. Chin-Bing, “Com-
parison of algorithms for solving para oli wave equations,” J. A oust. So .
Am. (su mitted, August 1995).

[8] M. B. Porter, F. B. Jensen, and C. M. Ferla, “The pro lem of energy
onservation in one-way models,” J. A oust. So . Am. 89, 1058-1067
(1991).



[9] M. D. Collins and E. K. Westwood, “A higher-order energy- onserving

para oli equation for range-dependent o ean depth, sound speed, and den-

sity,” J. A oust. So . Am. 89, 1068-1075 (1991).

[10] M. D. Collins, “A self-starter for the para oli equation method,” J.

A oust. So . Am. 92, 2069-2074 (1992).

[11] R. J. Ceder erg and M. D. Collins, “An effi ient forward model and

experimental onfiguration for geoa ousti inversion,” J. A oust. So . Am.
(su mitted, May 1995).

[12] M. D. Collins, “Ben hmark al ulations for higher-order para oli equa-

tions,” J. A oust. So . Am. 87, 1535-1538 (1990).

[13] G. Strang, Introduction to Linear Algebra (Wellesley-Cam ridge, Welles-

ley, 1993), p. 87.

[14] J. S. Perkins and R. N. Baer, “An approximation to the three dimensional

para oli -equation method for a ousti propagation,” J. A oust. So . Am.
72, 515-522 (1982).

[15] M. D. Collins and S. A. Chin-Bing, “A three-dimensional para oli equa-

tion model that in ludes the effe ts of rough oundaries,” J. A oust. So .

Am. 87, 1104-1109 (1990).

[16] D. Lee, G. Botseas, and W. L. Siegmann, “Examination of three dimen-

sional effe ts using a propagation model with azimuth- oupling apa ility
(FOR3D),” J. A oust. So . Am. 91, 3192-3202 (1992).

[17] M. D. Collins, B. E. M Donald, K. D. Heaney, and W. A. Kuperman,
“Three-dimensional effe ts in glo al a ousti s,” J. A oust. So . Am. 97,
15671575 (1995).

[18] F. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in FORTRAN (Cam ridge University Press, Cam ridge,
1992), Se ond Edition, pp. 362-368.

[19] M. D. Collins, “An energy- onserving para oli equation for elasti me-

dia,” J. A oust. So . Am. 94, 975-982 (1993).

[20] D. Lee, G. Botseas, and J. S. Papadakis, “Finite-differen e solution to

the para oli wave equation,” J. A oust. So . Am. 70, 795-800 (1981).
[21] M. D. Collins, “Appli ations and time-domain solution of higher-order

para oli equations in underwater a ousti s,” J. A oust. So . Am. 86,
1097-1102 (1989).

[22] F. B. Jensen and C. M. Ferla, “Numeri al solutions of range-dependent
en hmark pro lems,” J. A oust. So . Am. 87, 1499-1510 (1990).

10



Figure 1: Te hniques for solving tridiagonal systems. (a) The matrix prior
to elimination. The solid lines indi ate the three diagonals. The roken
line orresponds to the o ean ottom interfa e. The dashed lines indi ate:
the () elimination and ( ) a k su stitution steps of Gaussian elimination;
the (d) elimination and (e) a k su stitution steps of a s heme designed to
effi iently handle varying athymetry.
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range-dependent example title

50.0 50.0 50.0 freq zs zr
50000.0 500.0 1 rmax dr ndr
1000.0 2.0 1 500.0 zmax dz ndz zmplt
1600.0 8 1 0.0 cO np ns rs
0.0 200.0 rb zb
40000.0 400.0

-1 -1

0.0 1480.0 Z CW

100.0 1520.0

400.0 1530.0

-1 -1

0.0 1700.0 z cb

-1 -1

0.0 1.5 z rhob

-1 -1

900.0 0.5 z attn
1000.0 10.0

-1 -1

25000.0 rp

0.0 1530.0 Z CW

-1 -1

0.0 1700.0 z cb

-1 -1

0.0 1.5 z rhob

-1 -1

900.0 0.5 z attn
1000.0 10.0

-1 -1

Figure 2: Sample input file ram.in. Lines with -1 -1 are used to indi ate
the end of the athymetry and profile lo ks.
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title
freq
Zs

ZT
rmax
dr
ndr
zmax
dz
ndz
zmplt
cO

np

ns

rs

rb

zb

cw
cb

rhob
attn

rp

arbitrary string of characters

source frequency (Hz)

source depth (m)

receiver depth for tl.line (m)

maximum range (m)

range step (m)

range decimation factor for tl.grid (1=no decimation)
maximum depth (m)

depth grid spacing (m)

depth decimation factor for tl.grid (1=no decimation)
maximum depth of output to tl.grid
reference sound speed (m/s)

number of terms in rational approximation
number of stability constraints (1 or 2)
maximum range of stability constraints (m)
range of bathymetry point (m)

depth of bathymetry point (m)

depth of profile point (m)

sound speed in water column (m/s)

sound speed in sediment (m/s)

density in sediment (g/cc)

attenuation in sediment (dB/wavelength)
range of profile update (m)

Figure 3: Definition of the parameters that appear in ram.in.
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Figure 4: Transmission loss at z = 50 m for the test pro lem defined in Figure
2. The referen e solution is given y the solid urve. The RAM solution is
represented y the ir les that are spa ed y 500 m in range.
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